This Appendix contains 'skeleton' solutions to computational Assignment questions in the text.
121.00-3 Probability Problems - Solutions

1. Let M, W denote "man survives", "wife survives", respectively.
(a) $\quad P(M \cap W)=P(M) P(W)$
(PR1)
$=.8 \mathrm{x} .9$
$=.72$
(b) $P(M \cap \bar{W})=.8 \times .1$
(c) $P(\bar{M} \cap W)=.2 \times .9$
(d) $\quad P(M U W)=P(M)+P(W)-P(M) P(W)$

$$
\begin{aligned}
& =.8+.9-.8 \times .9 \\
& =0.98
\end{aligned}
$$

2. (a) Combinations yielding a total of 7 are $(1,6),(6,1)(2,5),(5,2),(3,4),(4,3)$
. . using geometrical definition of probability,

$$
\begin{aligned}
P(\text { sum of } 7) & =\frac{6}{36} \\
& =\frac{1}{6}
\end{aligned}
$$

(b) There are 11 outcomes involving a "1"

$$
\therefore P(\text { no } 1)=\frac{25}{36}
$$

(c) Number of outcomes involving exactly one $1=10$

$$
\begin{aligned}
\therefore P(\text { one } 1) & =\frac{10}{36} \\
& =\frac{5}{18}
\end{aligned}
$$

(d) $P($ at least one 1$)=\frac{11}{36}$
3. Let $3 W$ denote 3 white balls", etc
(a) No. ways to get 3 of the 5 white balls $={ }_{5} C_{3}$

No. ways to get 0 of the 3 black balls $={ }_{3} C_{0}$ No. ways to choose 3 balls from the 8 balls $={ }_{8} C_{3}$

$$
\begin{aligned}
\therefore P(3 W) & =\frac{5^{C_{3}} \times 3^{C_{0}}}{8^{C_{3}}} \\
& =\left(\frac{5!}{3!2!} \times \frac{3!}{3!0!}\right) \div \frac{8!}{5!3!} \\
& =\frac{5}{28}
\end{aligned}
$$

(b) $P(3 W \cup 3 B)=P(3 W)+P(3 B)$

$$
\begin{aligned}
P(3 B) & =\frac{5^{C} 0 \times 3^{C}}{8^{C_{3}}} \\
& =\frac{1}{56} \\
\therefore P(3 W \cup 3 B) & =\frac{5}{28}+\frac{1}{56} \\
& =\frac{11}{56}
\end{aligned}
$$

(c) P (at least one white) $=1-P(O W$

$$
\begin{aligned}
& =1-P(3 B) \\
& =1=\frac{1}{56} \\
& =\frac{55}{56}
\end{aligned}
$$

(from
(b))
4. There are 10 possible last digits for the second number, 9 of which will differ from the last digit of the first number.
. . $P($ different last digits $)=\frac{9}{10}$
5. Let Gl = "first child girl", etc
(a)

$$
\begin{array}{rlrl}
\mathrm{P}(\mathrm{G} \mid \mathrm{Gl}) & =\mathrm{P}(\mathrm{G2}) & & \begin{array}{l}
\text { since } \mathrm{Gl}, \mathrm{G} 2 \\
\text { independent }
\end{array} \\
& =\frac{1}{2} &
\end{array}
$$

(b) $P(2$ girls|at least one girl $)=\frac{P(2 \text { girls } n a t \text { least one girl) }}{P(a t \text { least one girl) }}$

$$
=\frac{P(2 \text { girls })}{1-P(2 \text { boys })}
$$

$$
=\frac{\frac{1}{4}}{1-\frac{1}{4}}
$$

$$
\begin{array}{r}
\frac{1}{3} \\
=
\end{array}
$$

6. (a) $P(6 \cap H \cap K S)=P(6) P(H) P(K S)$

$$
\begin{aligned}
& =\frac{1}{6} \times \frac{1}{2} \times \frac{1}{52} \\
& =\frac{1}{\underline{624}}
\end{aligned}
$$

(b) $P(\overline{6 \pi H \cap K S})=1-\frac{1}{624}$

$$
=\frac{623}{624}
$$

(c) $P(o d d \cap T \cap C l u b)=P(o d d) P(T) P(C l u b)$

$$
\begin{aligned}
& =\frac{3}{6} \times \frac{1}{2} \times \frac{13}{52} \\
& =\frac{1}{16}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } P[(6 U H) \cap Q]=P(6 U H) P(Q) \\
& =[P(6)+P(H)-P(6) P(H)] P(Q) \\
& =\left(\frac{1}{6}+\frac{1}{2}-\frac{1}{6} \times \frac{1}{2}\right) \frac{4}{52} \\
& =\frac{7}{156} \\
& \text { 7. } P(3 R \cap 2 B \cap 0 W)=\frac{7^{C_{3}} \times 4^{C_{2}} \times 3^{C_{0}}}{14^{C}} \\
& =\frac{15}{143} \\
& \text { 8. (a) Outcomes in } E_{1} \text { are }(1,4),(4,1),(2,3),(3,2) \\
& \therefore \quad P\left(E_{1}\right)=\frac{4}{36} \\
& =\frac{1}{9} \\
& \text { (b) } \\
& P\left(E_{2}\right)=P(R 4 \cup G 4) \quad(R 4 \equiv \text { red } 4, \text { etc) } \\
& =P(R 4)+P(G 4)-P(R 4) P(G 4) \\
& =\frac{1}{6}+\frac{1}{6}-\frac{1}{6} \times \frac{1}{6} \\
& =\frac{11}{36} \\
& \text { (c) } \\
& P\left(E_{3}\right)=0 \text { (impossible event) } \\
& \text { (d) } \quad P(R 4 \cap G 5)=P(R 4) P(G 5) \\
& =\frac{1}{6} \times \frac{1}{6} \\
& =\frac{1}{36}
\end{aligned}
$$

(e) $P(R 4 \cup G 5)=P(R 4)+P(G 5)-P(R 4) P(G 5)$
(PR)

$$
\begin{aligned}
& =\frac{1}{6}+\frac{1}{6}-\frac{1}{6} \times \frac{1}{6} \\
& =\frac{11}{36}
\end{aligned}
$$

9. (a) $P(A t$ least one person gets all the cards of one suit)

$$
\begin{aligned}
& =\frac{4^{2} \times 13^{C_{13}} \times{ }_{39^{C}} 13{ }^{\times}{ }_{26^{C}} 13{ }^{\times} \times 13^{C_{13}}}{52^{C_{13}} \times{ }_{39^{C}} 13^{\times} \times 6^{C_{13}} \times 13^{C_{13}}} \\
& =2.52 \times 10^{-11}
\end{aligned}
$$

(b) P (one person gets 4 aces, 4 kings, 4 queens)

$$
\begin{aligned}
& =\underline{\underline{2.52 \times 10^{-10}}}
\end{aligned}
$$

10. Let E, A represent failure of engine, airframe, respectively. Then

$$
\begin{aligned}
P(\text { failure }) & =P(E \cup A) \\
& =P(E)+P(A)-P(E) P(A) \\
& =0.002+0.0007-0.002 \times 0.0007 \\
& =0.003
\end{aligned}
$$

11. $P(2$ heads \mid at least $1 H)=\frac{P(2 \text { heads } \cap \text { at least } 1 H)}{P(a t \text { least } 1 H)}$

$$
=\frac{P(2 \text { heads })}{1-P(2 \text { tails })}
$$

$$
\begin{aligned}
& =\frac{\frac{1}{4}}{1-\frac{1}{4}} \\
& =\frac{1}{\frac{3}{=}}
\end{aligned}
$$

12. Let A, B, C, S represent failure of component A, B, C, and system, respectively. Then

$$
\begin{aligned}
P(S) & =P(A U(B \cap C)) \\
& =P(A)+P(B \cap C)-P(A) P(B \cap C) \\
& =P(A)+P(B) P(C)-P(A) P(B) P(C) \\
& =0.02+0.08 \times 0.10-0.02 \times 0.08 \times 0.10 \\
& =0.03
\end{aligned}
$$

13. (a) $N(A)=31$
(b) $N(B)=39$
(c) $N(C)=30$
(d) $N(A \cap B)=16$
(e) $N(A \cap C)=12$
(f) $N(A \cap B \cap C)=4$
(g) $N(A \cup B)=54$
(h) $N(B \cup C)=57$
(i) $N(A \cup B \cup C)=64$
(j) $N(B \cap(A \cup C))=24$
14. (a) $P(B)=\frac{39}{75}$
(b) $P(A)=\frac{31}{75}$
(c) $P(B \cap \bar{C})=\frac{9}{25}$
(d) $P(\bar{B} \cap A \cap C)=\frac{8}{75}$
(e) $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$

$$
=\frac{16}{3 I}
$$

(f) $\quad P(C \mid B)=\frac{P(B \cap C)}{P(B)}$

$$
\begin{aligned}
& =\frac{12}{39} \\
& =\frac{4}{13}
\end{aligned}
$$

(g) $P(A \cup C \mid B)=\frac{P([A \cup C] \cap B)}{P(B)}$

$$
=\frac{24}{39}
$$

$$
=\frac{8}{13}
$$

(h) $P(B \cap C \mid \bar{A})=\frac{P([B \cap C] \cap \bar{A})}{P(\overline{\bar{A}})}$

$$
\begin{aligned}
& =\frac{8}{75-31} \\
& =\frac{2}{11}
\end{aligned}
$$

(i) $P(\bar{B} \mid A \cap C)=\frac{P(\bar{B} \cap[A \cap C])}{P(A \cap C)}$

$$
\begin{aligned}
& =\frac{8}{12} \\
& =\frac{2}{3}
\end{aligned}
$$

15. Let A, B, C represent solution by A, B, C, respectively. Then P (solution) $=P(A U B U C)$

$$
\begin{aligned}
& =1-P(\bar{A} \cap \bar{B} \cap \bar{C}) \\
& =1-P(\bar{A}) P(\bar{B}) P(\bar{C}) \\
& =1-\frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

16. One Die

$$
\begin{aligned}
E(x) & =\sum_{i} x_{i} p_{i} \quad \text { (x represents gain) } \\
& =\$ 1\left(\frac{1}{6}\right)+2 \$\left(\frac{1}{6}\right)+3 \$\left(\frac{1}{6}\right)+(-\$ 4) \frac{1}{6}+5\left(\frac{1}{6}\right)+(-\$ 6) \frac{1}{6} \\
& =\$ \frac{1}{6}
\end{aligned}
$$

Two Dice

$$
\begin{aligned}
E(x)= & \$ 2\left(\frac{1}{36}\right)+(\$ 3) \frac{2}{36}+(-\$ 4) \frac{3}{36}+(\$ 5) \frac{4}{36}+(-\$ 6) \frac{5}{36}+(\$ 7) \frac{6}{36} \\
& +(-\$ 8) \frac{5}{36}+(-\$ 9) \frac{4}{36}+(-\$ 10) \frac{3}{36}+(\$ 11) \frac{2}{36}+(-\$ 12) \frac{1}{36} \\
= & -\$ \frac{68}{36} \quad(-\$ 1.89)
\end{aligned}
$$

. Student should play game with one die, but not with two dice.
17. $P(a t$ least one number $>4)$
$=1-P($ both numbers $\leq 4)$
$=1-\left(\frac{4}{6}\right)^{2}$
$=\frac{5}{9}$
18. Let A, B denote "target hit by A, B ", respectively. Then
(a) $P(A \cap B)=P(A) P(B)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{1}{4}\right) \\
& =\frac{1}{8}
\end{aligned}
$$

(b) $P(A \cap \bar{B})=\frac{1}{2}\left(\frac{3}{4}\right)$

$$
=\frac{3}{8}
$$

(c) $P(\bar{A} \cap B)=\frac{1}{2}\left(\frac{1}{4}\right)$

$$
=\frac{1}{8}
$$

(d) $P(\bar{A} \cap \bar{B})=P(\bar{A}) P(\bar{B})$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{3}{4}\right) \\
& =\frac{3}{8}
\end{aligned}
$$

(e) Suppose B must fire n times.

$$
\begin{aligned}
& \text { Then } P(\text { target missed altogether } \leq 0.1 \\
& \Rightarrow P\left(\bar{A} \cap \bar{B}_{1} \cap \bar{B}_{2} \cap \ldots \cap_{n}\right) \leq 0.1 \\
& \text { ie, } P(\bar{A})[P(B)]^{n} \leq 0.1 \\
& \text { (PR1) } \frac{1}{2}\left(\frac{3}{4}\right)^{n} \leq 0.1 \\
& \text { ie, } n \log 0.75 \leq \log 0.2 \\
& \text { ie, } n \geq \frac{\log 0.2}{\log 0.75} \\
& \text { ie, } n \geq 5.6 \\
& \text { ie, } B \text { must fire } 6 \text { times before probability that target } \\
& \text { is hit exceeds } 90 \% \text {. }
\end{aligned}
$$

19. P(both numbers odd)

$$
=\frac{\text { Number odd-odd combinations }}{\text { Number odd-odd }+ \text { Number even-even }}
$$

$$
\begin{aligned}
& =\frac{5^{2}}{5^{2}+4^{2}} \\
& =\frac{25}{41}
\end{aligned}
$$

$$
\text { 20. } \begin{aligned}
E(x) & \left.=\sum_{i} x_{i} P_{i} \quad \text { (x represents gain }\right) \\
& =(\$ 1) P(1 \text { head })+(\$ 2) P(2 \text { heads })+(-\$ 5) P(2 \text { tails }) \\
& =(\$ 1)\left(\frac{1}{2}\right)+(\$ 2) \frac{1}{4}+(-\$ 5)\left(\frac{1}{4}\right) \\
& =-\$ \frac{1}{4}
\end{aligned}
$$

-. he should not be playing the game.
21. Let A, B represent item manufactured by machine \#1, 2, respectively, and D represent item defective. Then

$$
\begin{aligned}
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B) \\
& =0.05 \times 0.70+0.08 \times 0.30 \\
& =0.059
\end{aligned}
$$

22. (a) $P(A \cap B)=P(A \mid B) P(B)$

$$
\begin{aligned}
& =\frac{6}{1 I}\left(\frac{11}{36}\right) \\
& =\frac{1}{\frac{6}{=}}
\end{aligned}
$$

(b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{11}{36}-\frac{1}{6} \\
& =\frac{23}{36}
\end{aligned}
$$

(c) $P(A \cap \bar{B})=P(A)-P(A \cap B)$

$$
=\frac{1}{2}-\frac{1}{6}
$$

$$
=\frac{1}{\frac{3}{3}}
$$

(d) $P(B \cap \bar{A})=P(B)-P(B \cap A)$

$$
\begin{aligned}
& =\frac{11}{36}-\frac{1}{6} \\
& =\frac{5}{36}
\end{aligned}
$$

121.00-5 Safety Systems Analysis - Solutions to Sample Problems

1. $Q=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{5}{12 \times 30} \times \frac{1}{2} \\
& =3 \times 10^{-3}
\end{aligned}
$$

2. $\quad Q=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{3}{6 \times 12} \times \frac{\frac{1}{2} \times \frac{1}{52}}{2} \\
& =2 \times 10^{-4}
\end{aligned}
$$

3. $Q_{s}=Q_{1}+Q_{2}-Q_{1} Q_{2}$

$$
=1.7 \times 10^{-2}
$$

4. $Q_{S}=Q_{p}{ }^{2}$

$$
=4 \times 10^{-4}
$$

5. $\quad Q=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{50}{15 \times 10} \times \frac{\frac{1}{52}}{2} \\
& =3 \times 10^{-3}
\end{aligned}
$$

6. $T=\frac{2 Q}{\lambda}$

$$
\begin{aligned}
& =\frac{2 \times 1.0 \times 10^{-2}}{\frac{15}{5 \times 12}} \\
& =0.08 \text { years or } 4.2 \text { weeks. }
\end{aligned}
$$

ie, the system should be tested every 4 weeks.
7. $Q=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{10}{12 \times 8} \times \frac{\frac{1}{12}}{2} \\
& =4 \times 10^{-3}
\end{aligned}
$$

8. $\quad \mathrm{AR}=\lambda_{\mathrm{R}} \lambda_{\mathrm{P}} \frac{\mathrm{T}_{\mathrm{p}}}{2}$

$$
\begin{aligned}
& =\frac{3}{9} \times \frac{50}{9} \times \frac{\frac{1}{3} \times \frac{1}{365}}{2} \\
& =8 \times 10^{-4}
\end{aligned}
$$

9. (a) $A R=\lambda_{R}\left(Q_{p}+Q_{C T}-2 Q_{P} Q_{C T}\right)$ (exclusive "or")

$$
\begin{aligned}
& =0.3\left(2 \times 10^{-3}+5 \times 10^{-3}-2 \times 2 \times 10^{-3} \times 5 \times 10^{-3}\right) \\
& =2 \times 10^{-3}
\end{aligned}
$$

(b) $\quad A R=\lambda_{R}{ }^{Q} P^{Q} C T$

$$
\begin{aligned}
& =0.3 \times 2 \times 10^{-3} \times 5 \times 10^{-3} \\
& =3 \times 10^{-6}
\end{aligned}
$$

10. (a) $0=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{8}{6 \times 15} \times \frac{1}{\frac{12}{2}} \\
& =4 \times 10^{-3}
\end{aligned}
$$

(b) Test daily.
(c) $T=\frac{2 Q}{\lambda}$

$$
\begin{aligned}
& =\frac{2 \times 10^{-2}}{\frac{8}{6 \times 15}} \\
& =0.225 \mathrm{y} \text { or } 12 \text { weeks }
\end{aligned}
$$

11. $Q_{S}=P(\bar{A} \cup[\overline{B C D} \cup \overline{B C} \bar{D} U B \overline{C D} U \overline{B C D}]$

$$
\begin{aligned}
& =Q_{A}+\left[3 Q_{B}^{2} R_{B}+Q_{B}^{3}\right]-Q_{A}[] \\
& =0.05+\left[3(.1)^{2}(.9)+(.1)^{3}\right]-0.05 \times[] \\
& =0.08
\end{aligned}
$$

12. (a) $Q=$ fraction of time pump unavailable

$$
=\frac{124 \mathrm{~h}}{5 \times 365 \times 24 \mathrm{~h}}
$$

$$
=2.8 \times 10^{-3}
$$

(b) $Q_{S}=P[($ exactly 2 pumps fail) $\cup($ exactly 3 pumps fail) $]$

$$
\begin{aligned}
& \left.=3 C_{2} Q^{2} R+{ }_{3} C_{3} Q^{3}\right) \\
& =3(.0028)^{2}(1-.0028)+(.0028)^{3} \\
& =2.4 \times 10^{-5}
\end{aligned}
$$

13. (a) $P_{L S}=\lambda \frac{T}{2}=.02 \times \frac{\frac{1}{12}}{2}=\frac{.02}{24}=\frac{.01}{12}$

$$
\begin{aligned}
P_{P S} & =\lambda \frac{T}{2}=.02 \times \frac{\frac{1}{12}}{2}=\frac{.01}{12} \\
P_{P V} & =\lambda \frac{T}{2}=.05 \times \frac{12}{2}=\frac{.05}{24} \\
Q_{S} & =\left(\frac{.01}{12}\right)^{2}+\left(\frac{.01}{12}\right)+5\left(\frac{.05}{24}\right) \\
& =0.01
\end{aligned}
$$

(b) $P_{\text {LS }} \longrightarrow .04 \times \frac{\frac{1}{12}}{2}=\frac{.01}{6}$

$$
\begin{aligned}
& \therefore Q_{S}=\left(\frac{.01}{6}\right)^{2}+\left(\frac{.01}{12}\right)+5\left(\frac{.05}{24}\right) \\
&\left.=0.01 \quad \begin{array}{l}
\text { (ie, } \begin{array}{l}
\text { virtually no change since } \\
\\
\\
\\
\\
\text { contributes negligibly to } Q_{S}
\end{array}
\end{array}\right) .
\end{aligned}
$$

14. Fraction of time system unavailable,

$$
\begin{aligned}
Q & =\lambda \frac{T}{2} \\
& =\frac{20}{4} \times \frac{\frac{1}{365}}{2} \\
& =0.007 \\
& <1 \%
\end{aligned}
$$

. . probability of fault existing at any given instant < 1\%.
$\because \quad Q \quad \mathrm{a} T$ and $T=1$ week is seven times greater than $T=1$
-. unavailability would be seven times greater with same λ and weekly testing.
15. (a)

$$
\begin{aligned}
A R & =\lambda_{R} Q_{P} \\
& =\lambda_{R} \lambda_{P} \frac{T_{P}}{2} \\
& =\frac{2}{6} \times \frac{3}{6} \times \frac{\frac{1}{365}}{2} \\
& =2.3 \times 10^{-4}
\end{aligned}
$$

(b) Unavailability of containment,

$$
Q_{C}=Q_{1}+Q_{2}-Q_{1} Q_{2},
$$

where $\quad Q_{1} \equiv$ unavailability of air locks

$$
\begin{aligned}
& =\frac{40 \mathrm{hr}}{6 \times 365 \times 24 \mathrm{hr}} \\
& =7.6 \times 10^{-4}
\end{aligned}
$$

and $Q_{2} \equiv$ unavailability of logic system

$$
=\lambda^{\prime} \frac{T^{\prime}}{2}
$$

$$
=\frac{4}{6} \times \frac{\frac{1}{52}}{2}
$$

$$
=6.4 \times 10^{-3}
$$

$$
\begin{aligned}
\bullet Q_{2} & \equiv \text { unavailability of logic system } \\
& =\lambda \frac{T}{2} \\
& =\frac{4}{6} \times \frac{\frac{1}{52}}{2} \\
& =6.4 \times 10^{-3} \\
\therefore Q_{C} & =7.6 \times 10^{-4}+6.4 \times 10^{-3}=7.2 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{P}(\text { runaway }+ \text { release }) & =\mathrm{AR} \times Q_{\mathrm{C}} \\
& =2.3 \times 10^{-4} \times 7.2 \times 10^{-3} \\
& =1.7 \times 10^{-6}
\end{aligned}
$$

16. (a) The reliability of safety systems can be increased by:
(i) use of redundant components.
(ii) preventive replacement of components prior to wearout.
(iii) testing more frequently.
17. Reactor safety systems should be tested routinely.
(a) to detect and repair/replace faulty components.
(b) to maintain system reliability.
$\left(\mathrm{R}=1-\mathrm{Q}=1-\lambda \frac{\mathrm{T}}{2} \cdot . \quad\right.$ the shorter T, the greater R)
(c) to demonstrate whether or not reliability is meeting target, so that corrective action (eg, upgrading system, or more frequent testing) can be taken if it is not.
(d) to satisfy AECB license requirements.
18. (a) Expected runaway frequency,

$$
\begin{aligned}
\lambda_{r W} & =\lambda_{R} \lambda_{P} \frac{T_{P}}{2} \\
& =\frac{3}{5} \times \frac{2}{5} \times \frac{\frac{1}{365}}{2} \\
& =3 \times 10^{-4}
\end{aligned}
$$

(b) Probability of one or more LOR's/y.

$$
\begin{aligned}
Q(1) & =1-R(1) \\
& =1-e^{-\lambda_{R} \times 1} \\
& =1-e^{-0.6} \\
& =0.45
\end{aligned}
$$

19. Let Q_{V}, Q_{1}, Q_{s} represent unreliabilities of a value, a line, and the system, respectively.
(a) (i) $\quad Q_{v}=\lambda \frac{T}{2}$

$$
\begin{aligned}
& =\frac{6}{6 \times 5} \times \frac{\frac{1}{2} \times \frac{1}{52}}{2} \\
& =1.0 \times 10^{-3} \quad\left(9.6 \times 10^{-4}\right)
\end{aligned}
$$

(ii) $\quad Q_{1}=$ prob. either upper or lower valve fails

$$
=Q_{v}+Q_{v}-Q_{v}^{2}
$$

$$
=2\left(9.6 \times 10^{-4}\right)
$$

$$
=2 \times 10^{-3}
$$

$$
\left(1.9 \times 10^{-3}\right)
$$

(b) $Q_{s}=$ prob. all three lines fail

$$
=Q_{\ell}{ }^{3}
$$

$$
=\left(1.9 \times 10^{-3}\right)^{3}
$$

$$
=7 \times 10^{-9}
$$

20. (a) Unreliability of a dump channel,

$$
\begin{aligned}
Q_{C} & =\lambda \frac{T}{2} \\
& =\frac{4}{5 \times 3} \times \frac{\frac{1}{3} \times \frac{1}{52}}{2} \\
& =9 \times 10^{-4} \\
& \left(8.55 \times 10^{-4}\right)
\end{aligned}
$$

(b) $Q_{S}=$ prob. of 2 or 3 channels failing at once,

$$
={ }_{3} C_{2} Q_{C}^{2}\left(1-Q_{C}\right)+{ }_{3} C_{3} Q_{C}^{3}
$$

$$
=3\left(8.5 \times 10^{-4}\right)^{2}
$$

$$
=2 \times 10^{-6} \quad\left(2.2 \times 10^{-6}\right)
$$

(c) F valves should be left open.

Assuming F valves open:

$$
\begin{aligned}
Q_{S} & =\text { prob. both D, E fail } \\
& =Q_{C}^{2} \\
& =\left(8.5 \times 10^{-4}\right)^{2} \\
& =7 \times 10^{-7}
\end{aligned}
$$

Assuming F valves shut:

$$
\begin{aligned}
& Q_{S}=\underset{\text { prob }}{\text { fails or both }} \text { or or } E \\
& =Q_{C}+Q_{C}-Q_{C}{ }^{2} \\
& =2\left(8.5 \times 10^{-4}\right) \\
& =1.7 \times 10^{-3}
\end{aligned}
$$

21. Let Q_{C}, Q_{V} represent unreliability of control channel, mechanics of a valve, respectively.
(a)

$$
\text { (i) } \begin{aligned}
Q_{C} & =\lambda \frac{T}{2} \\
& =\frac{4}{5 \times 3} \frac{\frac{1}{3} \times \frac{1}{52}}{2} \\
& =8.5 \times 10^{-4}
\end{aligned}
$$

(ii) $Q_{V}=\lambda \frac{T}{2}$

$$
=\frac{7}{5 \times 6} \times \frac{\frac{1}{2} \times \frac{1}{52}}{2}
$$

$$
=1.1 \times 10^{-3}
$$

(b) (i) Suppose channel D failed. Then system effectively as shown:

$$
\begin{aligned}
Q_{S} & =\underset{\text { prob. either } E \text { or } F \text { fails or either valve }}{ } \\
& =\left(2 Q_{C}-Q_{C}{ }^{2}\right)+\left(2 Q_{V}-Q_{V}{ }^{2}\right)-\left(2 Q_{C}-Q_{C}{ }^{2}\right)\left(2 Q_{V}-Q_{V}{ }^{2}\right) \\
& =2\left(Q_{C}+Q_{V}\right) \\
& =4 \times 10^{-3}
\end{aligned}
$$

(ii) If D valves are opened then system is effectively as shown:

> Failure modes: 2 channels (l way) 1 channel, 1 valve (2 ways) 3 valves (2 ways) + higher order modes

$$
\begin{aligned}
Q_{S} & \doteq \underset{\text { prob. of failing } 2 \text { channels }+ \text { prob. of }}{ } \\
& \doteq Q_{C}{ }^{2}+2 Q_{C} Q_{V} \\
& =\left(8.5 \times 10^{-4}\right)^{2}+2\left(8.5 \times 10^{-4}\right)\left(1.1 \times 10^{-3}\right) \\
& =3 \times 10^{-6}
\end{aligned}
$$

121.00-6 The Binominal Distribution and Power System Reliability

1. $Q_{S}={ }_{14} C_{3} q^{3} r^{11}+{ }_{14} C_{4} q^{4} r^{10}+{ }_{14} C_{5} q^{5} r^{9}+\ldots+{ }_{14} C_{14} q^{14}$

$$
\begin{aligned}
& =\frac{14!}{11!3!}(.01)^{3}(.99)^{11}+\frac{14!}{10!4!}(.01)^{4}(.99)^{10}+\ldots+(.01)^{14} \\
& =3.26 \times 10^{-4}+9.1 \times 10^{-6}+\ldots+1 \times 10^{-28} \\
& =3.4 \times 10^{-4}
\end{aligned}
$$

Note system unavailability is greater than that in Example 5. Even though there are more valves in this system, the redundancy is decreased, because at least 12 of 14 valves are required for this system's success as compared with at least 6 of 8 valves in the system of Example 5 .
2. (a) Capacity Outage Probability Distribution Table - Generators A, B

k	Outage O_{k}		$\begin{aligned} & \text { Probability } \\ & \mathrm{P}_{\mathrm{k}} \end{aligned}$	Fraction of time O_{k} causes load loss $t_{k}(y / y)$	$P_{k} t_{k}$
	Units	Capacity			
1	none	0	0.912	0	0
2	A	50	0.048	0.133	0.0064
3	B	60	0.038	0.400	0.0152
4	A, B	110	0.002	1	0.0020
		ELC $=$	${ }_{1}{ }_{k}{ }^{t} k$		

ie, there is a load curtailment about 2.4% of the time
2. (b)

k	Outage O_{k}		$\begin{gathered} \text { Probability } \\ \mathrm{P}_{\mathrm{k}} \end{gathered}$	Fraction of time 0_{k} causes load loss $t_{k}(y / y)$	$\mathrm{P}_{\mathrm{k}} \mathrm{t}_{\mathrm{k}}$
	Units	Capacity			
1	none	0	0.87552	0	0
2	A	50	0.04608	0	0
3	B	60	0.03648	0.13333	0.00486
4	C	10	0.03648	0	0
5	A, B	110	0.00192	1	0.00192
6	A, C	60	0.00192	0.13333	0.00026
7	B, C	70	0.00152	0.40000	0.00061
8	A, B, C	120	0.00008	1	0.00008

$E L C=\sum_{k=1}^{8} P_{k} t_{k}$
ie, there is a load curtailment now only 0.77% of the time. Thus an increase of about 9% in generating capacity has reduced the ELC by a factor of about 3. This significant improvement occurs because the system can now tolerate a failure of generator A without load loss.
3. Forced Outage Rate $=0.015$
(a) $3 \times 100 \%$ transformer.

No OUT	Cap OUT	Probability	EXP\% Load Curtailment
0	0	$0.985^{3}=0.95567$	0
1	0	$3 \times .985^{2} \times .015=0.04366$	0
2	0	$3 \times .985 \times .015^{2}=6.649 \times 10^{-4}$	0
3	1008	$.015^{3}=3.38 \times 10^{-6}$	0.00338

Expected hours curtailment $=3.38 \times 10^{-6} \times 8760=0.0296 \mathrm{~h}$
(b) $3 \times 90 \%$ transformers.

No OUT	Cap OUT	Probability	Exp\% Load Curtailment
0	0	0.95567	0
1	0	0.04366	0
2	10	6.649×10^{-4}	0.006649
3	100	3.38×10^{-6}	0.000338

Prob. (2 out) + Prob. (3 out) $=0.000668$
Expected hour curtailment $=0.000668 \times 8760$

$$
=5.85 \mathrm{~h}
$$

(c) $3 \times 50 \%$ transformers.

No OUT	Cap OUT	Probability	Exp\% Load Curtailment
0	0	.95567	0
1	0	.04366	0
2	50	6.649×10^{-4}	0.033244
3	100	3.38×10^{-6}	0.000338

Prob. (2 out) + Prob (3 out) $=0.000668$
\therefore Expected hour curtailment $=5.85 \mathrm{~h}$
(d) $4 \times 33-1 / 3 \%$ transformers

No OUT	Cap out	Probability	Exp\% Load Curtailment
0	0	$.985^{4}$	
1	0	$4 \times .98^{3} \times .015$	
2	$33-1 / 3$	$6 \times .985^{2} \times .015^{2}=1.3098 \times 10^{-3}$	0.04366
3	$66-2 / 3$	$4 \times .985 \times .015^{3}=1.3297 \times 10^{-5}$	0.000887
4	100	$.015^{4}$.	$=5.0625 \times 10^{-8}$

Prob. (2 out) + Prob. (3 out) + Prob. (4 out) $=0.001323$
-E Exp hour curtailment $=0.001323 \times 8760=11.6 \mathrm{~h}$

Summary of Results

System	Exp\% Load Curtailment	Exp Load Curtailment h/y
$3 \times 100 \%$	0.000338	0.03
$3 \times 90 \%$	0.00699	5.9
$3 \times 50 \%$	0.034	5.9
$3 \times 33-1 / 3 \%$	0.045	11.6

121.00-7 The Normal Distribution and Applications

1.

$$
\begin{aligned}
& \mathrm{d} \equiv \begin{array}{l}
\text { inner diameter of } \\
\text { washers in } 0.001 \text { inches } \\
\mu=251 ; \sigma=3
\end{array}, ~
\end{aligned}
$$

$$
P(245<d<255)=P\left(\frac{245-251}{3}<z<\frac{255-251}{3}\right)
$$

$$
=P(-2<z<1.33)
$$

$$
=F(1.33)-F(-2)
$$

$$
=F(1.33)-[1-F(2)]
$$

$$
=0.9082-[1-0.9772]^{*}
$$

$$
=0.8854
$$

.. 88.5% of the washers will be within specifications
*From the Normal Distribution Table.

2 .

$$
\begin{aligned}
P(t \leq 1080) & =P\left(z \leq \frac{1080-1248}{185}\right) \\
& =P(z \leq-0.908) \\
& =F(-0.908) \\
& =1-F(0.908) \\
& =1-0.819 \\
& =0.181
\end{aligned}
$$

. 18.1% of the batteries will have to be replaced.

121.00-8 Basic Reliability Concepts

1. (a) $\quad R_{S}=R_{A} R_{B} R_{C}$

$$
\begin{aligned}
& =e^{-\alpha t} e^{-\beta t} e^{-\gamma t} \\
& =e^{-(\alpha+\beta+\gamma) t}
\end{aligned}
$$

(b) $\quad R_{S}=1-Q_{A} Q_{B} Q_{C}$

$$
=1-\left(1-e^{-\alpha t}\right)\left(1-e^{-\beta t}\right)\left(1-e^{-\gamma t}\right)
$$

(c) $\quad R_{S}=R_{C}\left(R_{A}+R_{B}-R_{A} R_{B}\right)$

$$
\begin{aligned}
& =e^{-\gamma t}\left(e^{-\alpha t}+e^{-\beta t}-e^{-(\alpha+\beta) t}\right) \\
& =e^{-(\alpha+\beta+\gamma) t}\left(e^{\beta t}+e^{\alpha t}-1\right)
\end{aligned}
$$

(d) $\quad R_{S}=R_{A} R_{B}+R_{C}-R_{A} R_{B} R_{C}$

$$
=e^{-(\alpha+\beta+\gamma) t}\left(e^{\gamma t}+e^{(\alpha+\beta) t}-1\right)
$$

2. $R(50)=0.9 \Longrightarrow e^{-50 \lambda}=0.9$

$$
\begin{aligned}
\therefore R(100) & =e^{-100 \lambda} \\
& =\left(e^{-50 \lambda}\right)^{2} \\
& =0.81
\end{aligned}
$$

3. 4 Components in Parallel:

$$
\begin{aligned}
R_{S} & ={ }_{4} C_{3} p^{3} q+{ }_{4} C_{4} p^{4} \\
& =4(0.9)^{3}(0.1)+1(0.9)^{4} \\
& =0.9477
\end{aligned}
$$

5 Components:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}}={ }_{5} \mathrm{C}_{3} \mathrm{p}^{3} q^{2}+{ }_{5} \mathrm{C}_{4} \mathrm{p}^{4} \mathrm{q}+{ }_{5} \mathrm{C}_{5} \mathrm{p}^{5} \\
&=10(0.9)^{3}(0.1)^{2}+5(0.9)^{4}(0.1)+(0.9)^{5} \\
&=0.99144 \text { (Reliability improves since system can now } \\
& \text { tolerate } 2 \text { failures) }
\end{aligned}
$$

4. $R_{S l}=R_{S l}^{B} R_{B}+R_{S l}^{\bar{B}} Q_{B}$
$=\left(R_{A^{\prime}}+R_{B^{\prime}}-R_{A^{\prime}} R_{B^{\prime}}\right) R_{B}+\left(R_{A} R_{A^{\prime}}+R_{C} R_{B^{\prime}}-R_{A} R_{A^{\prime}} R_{C} R_{B^{\prime}}\right) Q_{B}$
$\left.=(0.9+0.9-0.81)(0.9)+(0.81+0.81)-(0.9)^{4}\right)(0.1)$
$=0.98739$

$$
\begin{aligned}
R_{S 2} & =1-Q_{S 2} \\
& =1-\left(Q_{A} Q_{B} Q_{C}+Q_{B^{\prime}} Q_{A^{\prime}}-Q_{A} Q_{B} Q_{C} Q_{B^{\prime}} Q_{A^{\prime}}\right. \\
& =1-(0.001+0.01-0.00001) \\
& =0.98901
\end{aligned}
$$

System 2 has higher reliability because there are more possible paths, ie, $A \longrightarrow B^{\prime}$ and $C \longrightarrow A^{\prime}$, which are not open in system 1.
5. Given system \equiv

\equiv

ie, $R_{S}=R_{1} R_{C} R_{B}$

$$
\text { where } \begin{aligned}
R_{C} & =\left(R_{2} R_{A}+R_{6} R_{7}-R_{2} R_{A} R_{6} R_{7}\right), \\
R_{A} & =1-Q_{A}=1-Q_{3} Q_{4} Q_{5}, \text { and } \\
R_{B} & ={ }_{3} C_{2} R_{8}^{2} Q_{8}+{ }_{3} C_{3} R_{8}^{3}
\end{aligned}
$$

6. Let E ㄹ electrical power fails

$$
P \equiv \text { pumps fail }
$$

$$
V \equiv \text { valves fail }
$$

Then $Q_{S W}=P(E U P U V)$

$$
\begin{aligned}
& \doteq P(E)+P(P)+P(V) \\
& =Q_{E}+\left({ }_{4} C_{3} Q_{P}^{3} R_{P}+{ }_{4} C_{4} Q_{P}^{4}\right)+Q_{C V}\left(Q_{L}+Q_{B V}-Q_{L} Q_{B V}\right) \\
& \doteq Q_{E}+4 Q_{P}^{3}+Q_{C V}\left(Q_{L}+Q_{B V}\right) \\
& =8 \times 10^{-6}
\end{aligned}
$$

7. (a) $Q_{S l}=q+q-q^{2}$

$$
=2 \times 10^{-2}
$$

(b) $Q_{S 2}=Q_{S 1}{ }^{2}$
$=4 \times 10^{-4}$

(c) $Q_{S 3}=Q_{S 3}^{I} r_{1}+Q_{S}^{T} q_{1}$
(Bye's theorem)
$=q^{2} x+\left(q+q^{2}-q^{3}\right) q$
$=\underline{\underline{2 \times 10^{-4}}}$
8. $\quad Q_{S W}=P(S W$ fails \mid class 4 good $) R_{4}$ $+P\left(S W\right.$ fails \mid class 4 failed) $Q_{4} \quad$ (Bayes)
$=\left(1-R_{\text {pumps }} R_{V}\right) R_{4}+\left(1-R_{G} R_{B} R_{P}^{2} R_{V}\right) Q_{4}$
$\doteq\left(Q_{\text {pumps }}+Q_{V}\right) R_{4}+\left(Q_{G}+Q_{B}+2_{Q P}+Q_{V}\right) Q_{4}$
Now $Q_{\text {pumps }}=P(3$ or 4 of 4 pumps fail)
$={ }_{4} C_{3} Q_{P}^{3} R_{P}+{ }_{4} C_{4} Q_{P}^{4}$
$=4 Q_{P}^{3}$

$$
\begin{aligned}
\cdot Q_{S W} \doteq & 4 Q_{\mathrm{P}}^{3}+Q_{\mathrm{V}}+\left(Q_{\mathrm{G}}+Q_{\mathrm{B}}+2 Q_{\mathrm{P}}\right) Q 4 \\
= & 4\left(6 \times 10^{-4}\right)^{3}+7 \times 10^{-8} \\
& +\left(7 \times 10^{-3}+2 \times 10^{-2}+2 \times 6 \times 10^{-4}\right) 8 \times 10^{-6} \\
= & 3 \times 10^{-7}
\end{aligned}
$$

9.

If $\quad \mathrm{S} \equiv$ system survives
1FO 三 switch 1 fails open
2FS ミ switch 2 fails short
lG \equiv switch 1 is good, etc
then, by Baye's Theorem,

$$
\begin{aligned}
& P(S)=P(S \mid l G) P(1 G)+P(S \mid l F O) P(1 F O)+P(S \mid l F S) P(1 F S) \\
&=[1-P(2 F O)] P(1 G)+0+P(2 G) P(1 F S) \\
&=\left(1-\frac{\lambda_{O}}{\lambda} q\right) r+r\left(\frac{\lambda_{S}}{\lambda} q\right) \\
&=r+q r\left(\frac{\lambda_{S}-\lambda_{O}}{\lambda}\right) \\
&=r\left(1+\frac{\lambda_{S}-\lambda_{O}}{\lambda}\right)-r^{2}\left(\frac{\lambda_{S}-\lambda_{O}}{\lambda}\right) \\
& \text { ie, } R_{S}=\frac{2 \lambda_{S}}{\lambda} r+\frac{\lambda_{O}-\lambda_{S}}{\lambda} r^{2} \\
& \text { The reliability of a single switch system is I. } \\
& \lambda_{O}=\lambda_{S} \Longrightarrow R_{S}=r
\end{aligned}
$$

Thus when open and short failure modes are equally probable, adding a second switch has no effect on system reliability

$$
\lambda_{\mathrm{O}}=0 \Longrightarrow \mathrm{R}_{\mathrm{S}}=2 r-\mathrm{r}^{2}
$$

Thus, when the switches can only fail short, system reliability is improved by adding the second switch. Note that the second switch is physically connected in series, but the reliability expression is appropriate for two components in parallel ie, the reliability block diagram would show the two switches in parallel.

$$
\lambda_{S}=0 \Longrightarrow R_{S}=r^{2}
$$

Thus, when the switches can only fail open, system reliability is reduced by adding the second switch.
10. (a) $\quad R_{S}=R_{S}^{D_{D}} R_{D}+R_{S}^{\bar{D}_{D}}$

$$
\begin{aligned}
= & R_{D}\left(R_{S}^{D C_{R}}{ }_{C}+R_{S}^{D \bar{C}_{Q_{C}}}\right)+Q_{D}\left(R_{S}^{\overline{D C}} R_{C}+R_{S}^{\overline{D C}} Q_{C}\right) \\
= & R_{D} R_{C}\left(R_{A} R_{B} R_{G}+R_{F}-R_{A} R_{B} R_{G} R_{F}\right) \\
& +R_{D} Q_{C}\left(R_{A} R_{B} R_{G}+R_{E} R_{F}-R_{A} R_{B} R_{G} R_{E} R_{F}\right) \\
& +Q_{D} R_{C}\left(R_{A}\left(R_{B} R_{G}+R_{F}-R_{B} R_{G} R_{F}\right)\right) \\
& +Q_{D} Q_{C} R_{A} R_{B} R_{G} \\
= & .81(.729+.9-0.6561)+.09(.729+.81-.59049) \\
& +.09(.9(.81+.9-.729))+.01 \times .729 \\
= & 0.788049+.0853659+0.079461+0.00729 \\
= & 0.9601659
\end{aligned}
$$

(b) $\quad R_{S}=R_{S}^{A} R_{A}+R_{S}^{\bar{A}} Q_{A}$

$$
\begin{aligned}
= & R_{A}\left(R_{S}^{A D} R_{D}+R_{S}^{A D} Q_{D}\right)+Q_{A}\left(R_{S}^{\overline{A D}} R_{D}+R_{S}^{\overline{A D}} Q_{D}\right) \\
= & R_{A} R_{D}\left(R_{B} R_{G}+\left(R_{C}+R_{E}-R_{C} R_{E}\right) R_{F}-R_{B} R_{G}\left(R_{C}+R_{E}-R_{C} R_{E}\right) R_{F}\right) \\
& +R_{A} Q_{D}\left(R_{B} R_{G}+R_{C} R_{F}-R_{B} R_{G} R_{C} R_{F}\right) \\
& +R_{D} Q_{A}\left(R_{C}+R_{E}-R_{C} R_{E}\right) R_{F} \\
& +Q_{A} Q_{D}(0) \\
= & 0.7932249+0.086751+0.08019 \\
= & 0.9601659
\end{aligned}
$$

11. (a) Equivalent system:

Then $Q_{S}=Q_{a}\left(1-R_{b} R_{5}\right)$

$$
\begin{aligned}
= & \left(1-R_{1} R_{2}\right) Q_{3}\left[1-\left({ }_{4} C_{2} R_{4}^{2} Q_{4}^{2}+{ }_{4} C_{3} R_{4}^{3} Q_{4}+{ }_{4} C_{4} R_{4}^{4}\right) R_{5}\right] \\
= & \left(1-R_{1} R_{2}\right) Q_{3}\left[1-\left(6 R_{4}^{2} Q_{4}^{2}+4 R_{4}^{3} Q_{4}+R_{4}^{4}\right) R_{5}\right] \\
O Q_{S}= & \left(Q_{1}+Q_{2}-Q_{1} Q_{2}\right) Q_{3}\left[4 Q_{4}^{3} R_{4}+Q_{4}^{4}+Q_{5}\right. \\
& \left.-\left(4 Q_{4}^{3} R_{4}+Q_{4}^{4}\right) Q_{5}\right]
\end{aligned}
$$

(b)

$$
Q_{S}=0.00196327
$$

12. (a) Let $Q_{s y s}^{l}, Q_{s y s}^{l f s} Q_{\text {syst }}^{l f o}$ represents system unreliability given that diode 1 is up (good), failed short, failed open, respectively. Then by Baye's Theorem,

$$
\begin{aligned}
Q_{\text {sys }} & =Q_{\text {sys }^{1} R_{1}+Q_{s_{Y s}}^{1 f s_{s}}+Q_{\text {sys }_{o}}^{1 f Q_{O}}} \\
& =Q_{s} R_{1}+1 Q_{s}+Q Q_{o} \\
& =(0.01)(0.97)+0.01+(0.03)(0.02) \\
& =0.0097+0.01+.0006 \\
& =0.0203
\end{aligned}
$$

(b) UIR $=\frac{0.03}{0.0203}$

$$
=1.48
$$

(c) $Q_{s}=0.02, Q_{0}=0.01 \Longrightarrow Q_{\text {sys }}=0.02 \times 0.97+0.02$

$$
+0.03 \times 0.01
$$

$=0.0397$

$$
\begin{aligned}
\mathrm{UIR} & =\frac{0.0300}{0.0397} \\
& =0.76
\end{aligned}
$$

The parallel combination is less reliable than the single diode in this case because the second diode is more likely to fail the system by failing short than it is to save the system with diode 1 failed open.
121.00-9 Operation in the Wearout Region
1.

$$
R(46000 \mid 45000)=R_{u}(46000 \mid 45000) R_{W}(46000 \mid 45000)
$$

where $R_{u}(46000 \mid 45000)=e^{-1000 \lambda_{u}}$

$$
=0.9990
$$

and

$$
R_{W}(4600 \mid 4500)=\frac{R_{W}(46000)}{R_{W}(45000)}
$$

$$
=\frac{1-F\left(\frac{46000-50000}{5000}\right)}{1-F\left(\frac{45000-50000}{5000}\right)}
$$

$$
=\frac{F(0.8)}{F(1)}
$$

$$
=\frac{0.7881}{0.8413} \quad \begin{aligned}
& \text { (from Normal } \\
& \text { Distribution Table) }
\end{aligned}
$$

$$
=0.9368
$$

$$
\begin{aligned}
. \cdot \text { Mission Reliability } & =0.9990 \times 0.9368 \\
& =0.9359
\end{aligned}
$$

2. See text.
3. - by replacing components preventatively before wearout

- by installing redundant components
- by increasing test frequency (passive systems only)

4. See text.
5. Failure Mode and Effect Analysis

This is a suggested solution to the assignment question at the end of 121.00-10. It is not necessarily the only correct solution, and you may disagree with some of the conclusions. Your analysis should, however, have considered each of the failure modes detailed.

Line Number	Item	Failure Mode	MTTF	Effect of Failure	Severity	Comments
1	Suction Filter	Blocked	$6 \times 10^{2} \mathrm{~h}$	Greatly reduced oil supply.	3	Consider renoval and replacement with tank strainer.
2	as 1	Air leakage	$2 \times 10^{5} \mathrm{~h}$	Reduced O/P.	2	as 1.
3	Pump \#1 or \#2	Shut down	$5 \times 10^{3} \mathrm{~h}$	Loss of backup.	1	Provide suction isolation valve for repair.
4	Electrical supply to pumps	Total loss	$2 \times 10^{4} \mathrm{~h}$	Total loss of Lub oil Pressure.	4	Consider DC supplied back-up or alternative AC supplies.
5	Discharge NR valve	Open	$8 \times 10^{8} \mathrm{~h}$	None in normal operation except back pressure on standby pump.	2	Only a problem if one pump out for maintenance, or if standby had to be isolated to prevent rotation.
6	as 5	Shut	$6 \times 10^{8} \mathrm{~h}$	Loss of standby pump availability.	2	
7	Discharge Filter	Heavy Leakage	$5 \times 10^{5} \mathrm{~h}$	Reduced oil supply. Heavy oil loss.	3	Fit two in parallel with ganged changeover valves.

Line Number	Item	Failure Mode	MTTF	Effect of Failure	Severity	Comments
8	as 7	Blocked	$2 \times 10^{3} \mathrm{~h}$	Greatly reduced oil supply.	3	as 7
9	Pump pressure gauge \#1 or \#2	Loss of indj.cation	$9 \times 10^{3} \mathrm{~h}$		1	Are 2 required?
10	as 9	Burst	$8 \times 10^{4} \mathrm{~h}$	Loss of pressure heavy loss of oil.	4	(a) move to pump side of NR valve (b) fit isolation valve on root line (c) use orifice on root line to reduce leak rate until. isolated OR use l. gauge on suction of filter with isolation valve and orifice
11	Pressure gauge - filter discharge	Loss of indication	$9 \times 10^{3} \mathrm{~h}$	No indication of pressure to bearings. No indication of filter ΔP	1 1	Fit transducer and alarm Fit 'pop up' Δ p alarm on filter
12	as 11	Burst	$8 \times 10^{4} \mathrm{~h}$	Loss of pressure heavy oil loss.	4	- use orifice to reduce leak rate Consider replacement unit (a) more reliable gauge, or (b) transducer and remote gauge

FMECA GRID

Design Changes

As a result of this analysis, the following design changes could be considered.

1. Remove the suction filter and replace by a coarse strainer in the tank.
2. Provide isolation valves on pump suctions.
3. Provide DC supplied back up pump.
4. Fit two discharge filters in parallel, with ganged change over valves and high differential pressure "pop-up" alarms.
5. Move the pumps discharge pressure gauges to the pump side of the NR valve. Fit isolation valves on the root line. Fit orifices into the root line to reduce leak rate until isolation, or fit one gauge at filter inlet with an isolation valve.
6. Fit pressure transducer and remole gauge, or alarm, at filter outlet.

> L. Haacke
> R. Malcolm

